
Morskate[®]

Installation

The illustration shows the correct position of the oil and water connections for horizontal and vertical mounting to ensure that the coolers operate full of water. The cooler is usually mounted in the system return line or drain line to tank and the water should be connected in counter flow to the oil flow. Long lengths of unsupported pipe or excessive pipe vibration should be avoided and where there are extreme fluctuations in flow or pressure it may be advisable to mount the cooler 'off-line' with its own recirculating pump.

A check valve to by-pass oil across the cooler under cold starting conditions is recommended especially for oil with a high viscosity.

Materials

These coolers are available in both industrial and marine versions.

Standard Industrial version specifications.

Tubes	90/10 Copper/Nickel	ISO: CuNi10Fe1Mn			
Tubeplates	Naval Brass	ISO: CuZn38Sn1			
Body	Aluminium (2300 & 2500)	ISO: AlSi1MgMn			
	(2700 & 2800)	ISO: AISi12			
Headers	Cast Iron	ISO: R185Gr20			
Leak detection rings	Carbon Steel (2700 & 2800)	ISO: Fe430A			
Seals	Nitrile				

This specification is given by using 2 as the last digit in the cooler code, e.g. 2312 Viton seals for oil temperatures >100°C is given by changing the last digit to 3, e.g. 2313

Marine version specification differences.

Headers	Gunmetal	ISO: GCuSn5Pb5Zn5
---------	----------	-------------------

This specification is given by using 4 as the last digit in the cooler code, e.g. 2314 Viton seals for oil temperatures >100°C is given by changing the last digit to 5, e.g. 2315

Special Marine version specification differences for severely polluted or poor quality water.

Headers	Gunmetal	ISO: GCuSn5Pb5Zn5
Tubeplates	90/10 Copper/Nickel	ISO: CuNi10Fe1Mn
Tubes	70/30 Copper/Nickel	ISO: CuNi30Mn1Fe

This specification is given by using 6 as the last digit in the cooler code, e.g. 2316 Viton seals for oil temperatures >100°C is given by changing the last digit to 7, e.g. 2317

Performance

The following tables give typical examples of cooler performance at specified oil and water flows using Viscosity Grade 37 oil at an inlet temperature of 60°C and a water supply temperature of 20°C. This is for general cooler selection only; performance curves are also provided for more accurate selection. If you require help with cooler selection

please contact the Thermex Sales Department.

Where sea water is the cooling medium, the water flow rate should be controlled to fall within the limits shown in the following table.

Prolonged use with polluted harbour or estuary water outside these flow limits may result in tube failure.

Type	Heat Dissipated kW	Oil Flow litre/min	Oil Press kPa	ure Drop bar	Water Flow litre/min	Head kPa	loss bar	Sea wat min litre/min	ter Flow max litre/min
2312 2322 2332 2342 2352 2362 2372	3.6 6 10 15 19 24 31	40 50 65 80 90 100 120	40 60 50 80 60 90 120	0.4 0.6 0.5 0.8 0.6 0.9	8 8 13 16 19 21 24	1 1 3 5 8 13	0.01 0.01 0.03 0.05 0.08 0.13 0.15	20	45
2512 2522 2532 2542 2552 2562 2572 2582 2592	17 25 32 42 51 68 85 110	120 140 160 180 200 220 250 280 300	60 70 60 90 80 100 80 110	0.6 0.7 0.6 0.9 0.8 1.0 0.8 1.1	30 40 45 50 60 70 87 120	1 2 4 6 10 17 30 65 75	0.01 0.02 0.04 0.06 0.10 0.17 0.30 0.65 0.75	50	120
2712 2722 2732 2742 2752 2762	92 124 140 175 208 241	340 360 380 400 420 440	50 100 80 120 160 180	0.5 1.0 0.8 1.2 1.6 1.8	170 180 190 200 210 220	18 23 29 37 46 59	0.18 0.23 0.29 0.37 0.46 0.59	100	210
2812 2822 2832 2842 2852 2862	124 168 193 240 288 339	460 490 520 550 580 610	40 70 60 80 100 110	0.4 0.7 0.6 0.8 1.0	230 245 260 275 290 305	16 20 26 33 42 54	0.16 0.20 0.26 0.33 0.42 0.54	140	300

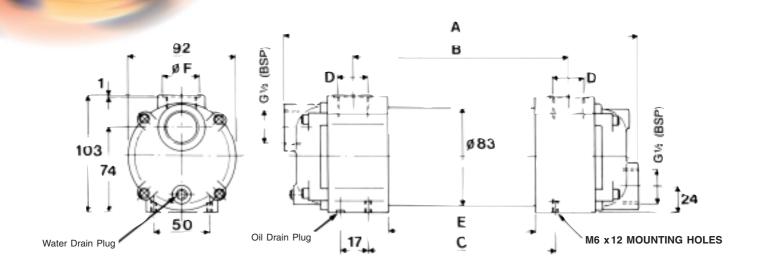
Cooler Selection

Oil pressure drop correction factor/oil viscosity (cSt)

cSt	10	15	20	25	30	40	50	75	100	150	200	300
c.f.	0,7	0,9	1,0	1,1	1,3	1,5	1,7	2,2	2,7	3,6	4,5	6,3

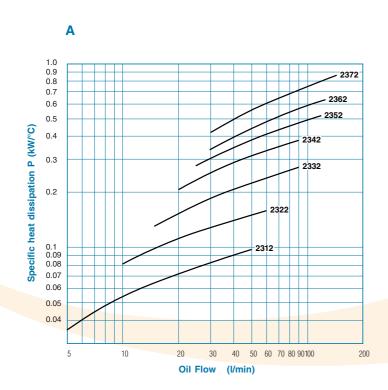
The following curves provide a more precise selection than the general table. The method of selection is as follows:

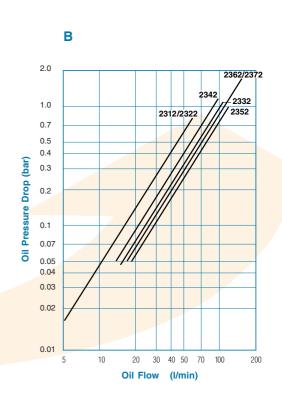
1. Calculate the specific heat dissipation (P) using the following expression:

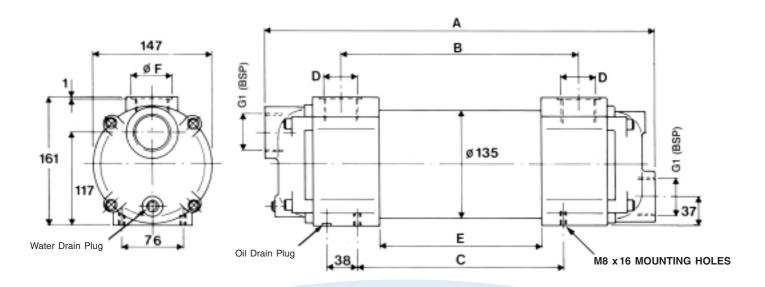

$$P = \frac{E}{th_1 - tc_1}$$

Where **E** = required heat dissipation (kW)

th₁ = oil inlet temperature to cooler (°C)

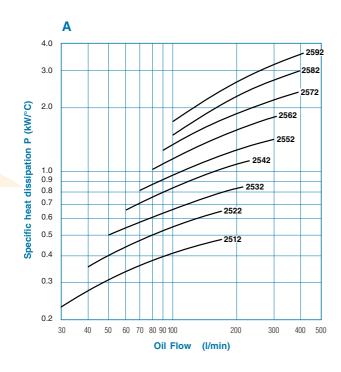

 tc_1 = water supply temperature (°C)

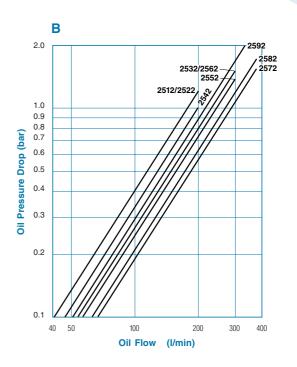

- Select cooler part number from graph A at value of P obtained in step 1 using the appropriate oil flow through cooler.
- 3. The pressure drop can be read off graph B. Note that the graphs are for Viscosity Grade 37 oil at 60°C. For other temperatures or viscosities multiply the pressure drop obtained by the correction factor in the following table.
- 4. The water flow required is given in the general selection table.
- Where values for P are outside the standard graphs the Thermex sales department can be contacted for a more accurate selection.

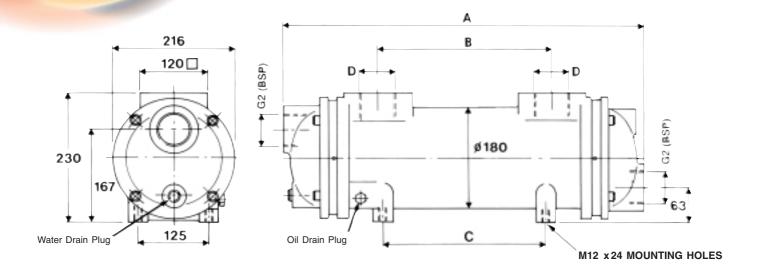


TYPE	A (mm)	B (mm)	C (mm)	D (BSP)	E (mm)	ØF (mm)	Kg	Oil Vol (I)	Water Vol (I)
2312	175	59	*	G¹/₂	_	29.1	3	0.3	0.4
2322	259	135	117	G ³ / ₄	_	36	4	0.5	0.5
2332	345	221	203	G ³ / ₄	_	36	5	0.7	0.6
2342	443	319	301	G ³ / ₄	263	36	5	1.0	0.7
2352	571	447	429	G ³ / ₄	391	36	6	1.3	0.9
2362	717	587	575	G1	537	_	7	1.7	1.1
2372	895	765	753	G1	715	_	8	2.2	1.4

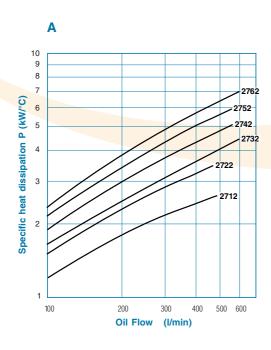
*On Model No. 2310 two M6 x 12 mounting holes are provided on base midway between oil port centres. Add suffix H to part number for $^{3}/_{4}$ " BSP water connections.

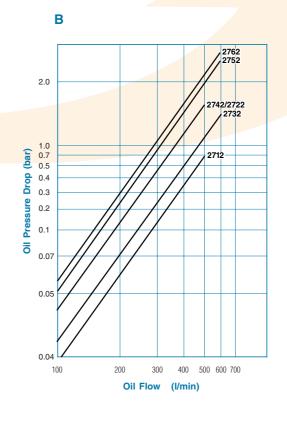


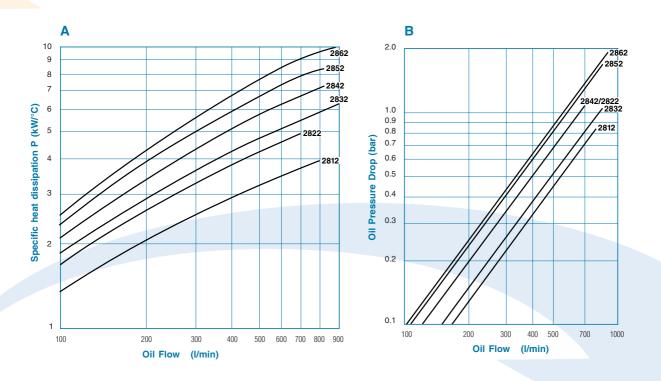


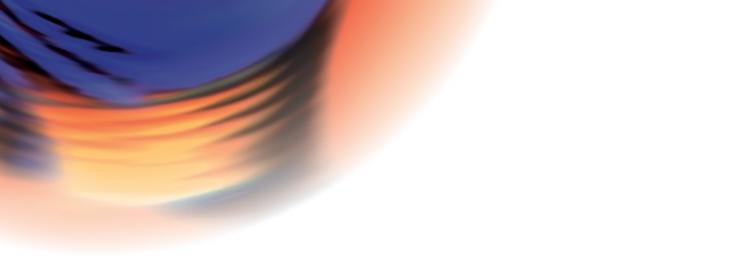


2512 291 129 75 G1 — 45 10 1.4	1.4
2522 377 199 161 G1 ¹ / ₄ — 53 12 1.9	1.7
2532 475 297 259 G1 ¹ / ₄ — 53 13 2.5	2.1
2542 603 425 387 G1 ¹ / ₄ 333 53 14 3.5	2.6
2552 749 571 533 G1 ¹ / ₂ 479 59 17 4.5	3.2
2562 927 749 711 G1 ¹ / ₂ 657 59 20 5.8	3.9
2572 1129 951 913 G1 ¹ / ₂ 859 59 23 7.3	4.8
2582 1381 1203 1165 G1 ¹ / ₂ 1111 59 27 9.0	5.8
2592 1727 1549 1511 G1 ¹ / ₂ 1457 59 32 11.5	7.2

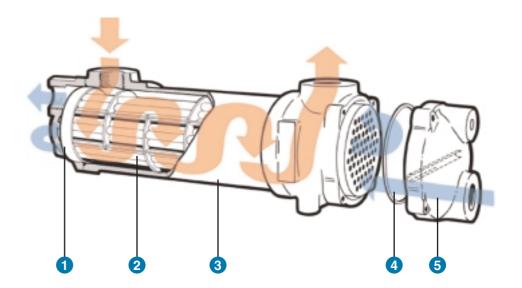

Add suffix H to part number for $1^{1}/_{2}$ " BSP water connections. ('A' = +14mm)




TYPE	A (mm)	B (mm)	C (mm)	D (BSP)	Kg	Oil Vol (I)	Water Vol (I)
2712	650	326	306	G2	38	5.5	5.0
2722	796	472	452	G2	43	7.0	6.0
2732	974	650	630	G2	48	9.0	7.5
2742	1176	852	832	G2	55	11.0	9.0
2752	1428	1104	1084	G2	63	14.0	10.5
2762	1777	1453	1433	G2	74	17.5	13.0



TYPE	A (mm)	B (mm)	C (mm)	D (BSP)	Kg	Oil Vol (I)	Water Vol (I)
2812	684	326	306	G3	48	9.0	7.5
2822	830	472	452	G3	54	11.5	9.0
2832	1008	650	630	G3	62	15.0	10.5
2842	1210	852	832	G3	71	18.5	13.0
2852	1462	1104	1084	G3	82	23.0	15.5
2862	1811	1453	1433	G3	97	29.5	19.0



These Oil Coolers have been designed specifically for Hydraulic systems, but they are equally suitable for cooling lubricating oils, heat transfer fluids, etc. The high efficiency tubestack is fully floating to minimise thermal stresses and incorporates the unique Thermex tube-to-tubeplate joint ensuring reliability under extreme operating conditions.

The 2700 and 2800 ranges have twin seals and witness rings fitted as standard to provide maximum protection against fluid cross-contamination.

- 1 Tube Plate
- 2 Tubes
- 3 Body Shell
- 4 Seal
- 6 Header

The information contained in this brochure was correct at the time of going to print. Thermex policy is one of continuous product evaluation and development. The right is reserved to change specifications as described in this publication at any time without prior notice.